Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite the increasing use of standards for documenting and testing agent-based models (ABMs) and sharing of open access code, most ABMs are still developed from scratch. This is not only inefficient, but also leads to ad hoc and often inconsistent implementations of the same theories in computational code and delays progress in the exploration of the functioning of complex social-ecological systems (SES). We argue that reusable building blocks (RBBs) known from professional software development can mitigate these issues. An RBB is a submodel that represents a particular mechanism or process that is relevant across many ABMs in an application domain, such as plant competition in vegetation models, or reinforcement learning in a behavioural model. RBBs need to be distinguished from modules, which represent entire subsystems and include more than one mechanism and process. While linking modules faces the same challenges as integrating different models in general, RBBs are “atomic” enough to be more easily re-used in different contexts. We describe and provide examples from different domains for how and why building blocks are used in software development, and the benefits of doing so for the ABM community and to individual modellers. We propose a template to guide the development and publication of RBBs and provide example RBBs that use this template. Most importantly, we propose and initiate a strategy for community-based development, sharing and use of RBBs. Individual modellers can have a much greater impact in their field with an RBB than with a single paper, while the community will benefit from increased coherence, facilitating the development of theory for both the behaviour of agents and the systems they form. We invite peers to upload and share their RBBs via our website - preferably referenced by a DOI (digital object identifier obtained e.g. via Zenodo). After a critical mass of candidate RBBs has accumulated, feedback and discussion can take place and both the template and the scope of the envisioned platform can be improved.more » « less
-
Modeling is essential to characterize and explore complex societal and environmental issues in systematic and collaborative ways. Socio-environmental systems (SES) modeling integrates knowledge and perspectives into conceptual and computational tools that explicitly recognize how human decisions affect the environment. Depending on the modeling purpose, many SES modelers also realize that involvement of stakeholders and experts is fundamental to support social learning and decision-making processes for achieving improved environmental and social outcomes. The contribution of this paper lies in identifying and formulating grand challenges that need to be overcome to accelerate the development and adaptation of SES modeling. Eight challenges are delineated: bridging epistemologies across disciplines; multi-dimensional uncertainty assessment and management; scales and scaling issues; combining qualitative and quantitative methods and data; furthering the adoption and impacts of SES modeling on policy; capturing structural changes; representing human dimensions in SES; and leveraging new data types and sources. These challenges limit our ability to effectively use SES modeling to provide the knowledge and information essential for supporting decision making. Whereas some of these challenges are not unique to SES modeling and may be pervasive in other scientific fields, they still act as barriers as well as research opportunities for the SES modeling community. For each challenge, we outline basic steps that can be taken to surmount the underpinning barriers. Thus, the paper identifies priority research areas in SES modeling, chiefly related to progressing modeling products, processes and practices.more » « less
An official website of the United States government
